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Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coin-
cides with the Chicxulub bolide impact and also falls within the
broader time frame of Deccan trap emplacement. Critically, though,
empirical evidence as to how either of these factors could have
driven observed extinction patterns and carbon cycle perturbations
is still lacking. Here, using boron isotopes in foraminifera, we docu-
ment a geologically rapid surface-ocean pH drop following the
Chicxulub impact, supporting impact-induced ocean acidification as
amechanism for ecological collapse in themarine realm. Subsequently,
surface water pH rebounded sharply with the extinction of marine
calcifiers and the associated imbalance in the global carbon cycle. Our
reconstructed water-column pH gradients, combined with Earth sys-
tem modeling, indicate that a partial ∼50% reduction in global ma-
rine primary productivity is sufficient to explain observed marine
carbon isotope patterns at the K-Pg, due to the underlying action
of the solubility pump. While primary productivity recovered within
a few tens of thousands of years, inefficiency in carbon export to the
deep sea lasted much longer. This phased recovery scenario recon-
ciles competing hypotheses previously put forward to explain the
K-Pg carbon isotope records, and explains both spatially variable
patterns of change in marine productivity across the event and a
lack of extinction at the deep sea floor. In sum, we provide insights
into the drivers of the last mass extinction, the recovery of marine
carbon cycling in a postextinction world, and the way in which ma-
rine life imprints its isotopic signal onto the geological record.

Cretaceous/Paleogene boundary | ocean acidification | boron isotopes |
mass extinction | GENIE model

There is abundant evidence for a massive bolide impact at the
Cretaceous–Paleogene (K-Pg) boundary (66.04 Ma) that

coincides in those sections with sufficient temporal resolution
with a mass extinction horizon (e.g., ref. 1). Geological records
document many effects from impact, including massive tsunamis,
earthquake-driven gravity flows, and molten ejecta fallout (e.g.,
ref. 1). However, the mechanism (or mechanisms) by which
impact drove global-scale ecosystem turnover and mass extinc-
tion is less certain. Among the most prominent hypotheses are
global darkness and associated primary productivity loss leading
to food chain collapse, acid rain, impact winter, and flash ocean
acidification (2). Some of these mechanisms are supported by
modeling work (e.g., ref. 3) but, critically, they generally lack
empirical validation. Furthermore, the issue is complicated by
the possibility of contributing effects from ongoing or intensified
Deccan flood basalt volcanism (4, 5) and the short timescales of
at least some of the effects of impact compared to the resolution
of the geological record.

Here we apply the boron isotope-pH proxy to planktic and
benthic foraminifera to examine whether ocean acidification oc-
curred at the K-Pg boundary and to test competing hypotheses
that have been proposed to explain changes in the marine carbon
cycle in the aftermath of the mass extinction. We analyzed material
from multiple sites where sufficient well-preserved foraminifera
from the mixed layer of the surface ocean could be obtained,
with >7,000 small, thin-walled postextinction foraminifera re-
quired per analysis in some cases. By combining measurements
from continental shelf sites in communication with the open ocean
[Geulhemmerberg Cave, The Netherlands (6), Owl Creek, Mis-
sissippi (7), and Brazos River, Texas (8)] and deep-sea drilling sites
(Deep-Sea Drilling Program Site 465 and Ocean Drilling Program
[ODP] Site 1209 in the Pacific and ODP Site 1049 in the Atlantic),
we construct a composite global record spanning ∼800 ky (SI
Appendix). Importantly, one shallow marine sample site studied
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here (Geulhemmerberg Cave) is thought to preserve sediments
from the first 102 to 103 y after bolide impact (6), allowing us to
pinpoint a short-lived signal of impact-induced ocean acidification
that cannot be temporally resolved in deep marine records. Sam-
ples from ODP Site 1209 allow us to investigate longer-term
changes in the ocean’s biological carbon pump as expressed in
vertical pH gradients, as this site is one of few deep marine K-Pg
boundary sites that preserves sufficient numbers of well-preserved
epifaunal benthic and surface-dwelling planktic foraminifera for
boron isotope analysis. The broad range of in situ temperatures,
hydrostatic pressures, and environmental conditions represented
in our sample set allows us to constrain bulk seawater δ11B
(δ11Bsw; see SI Appendix), one of the main uncertainties in cal-
culating pH from deep-time δ11B measurements. Assuming fea-
sible limits on the calcium carbonate saturation state (ΩCaCO3) and
oxygen utilization at each site (see SI Appendix, section 5C), we
constrain K-Pg δ11Bsw to within 39.05 to 39.85‰.
Our data suggest ocean pH was stable over the last 100 ky of the

Cretaceous, despite suggestions of a major pulse of Deccan vol-
canism within this time interval (5). However, our data from the
Geulhemmerberg Cave boundary clay indicate a marked ∼0.25 pH
unit surface ocean acidification event within a thousand years
(6) of the bolide impact in the Geulhemmerberg Cave boundary
clay (Fig. 1C). These data provide geochemical evidence of rapid
acidification in the immediate aftermath of the Chicxulub impact.

Combined with model-derived estimates of alkalinity (SI Appen-
dix), this change in pH corresponds to a rise in atmospheric par-
tial pressure of CO2 (pCO2) from ∼900 ppm in the latest
Maastrichtian to ∼1,600 ppm in the immediate aftermath of bolide
impact (Fig. 1D). This measured pH drop may be a conservative
estimate of the full magnitude of impact-induced acidification, as
the earliest Ir-rich ejecta layer at Geulhemmerberg is thought to
have been eroded within ∼100 y of the impact (6). A geologically
rapid 0.2 to 0.3 pH unit change would have disadvantaged calci-
fying plankton vs. noncalcifiers (9) and could therefore explain the
selective extinction of calcifying pelagic organisms during the K-Pg
mass extinction (10–13) compared to noncalcareous groups such
as dinoflagellates (e.g., ref. 14) and radiolarians (e.g., ref. 15).
Similarly, since coccolithophores and planktic foraminifera from
coastal areas may be better adapted to fluctuations in pH (16), and
smaller foraminifera may better maintain calcification under low
pH (17), acidification could also help to explain on-shelf/off-shelf
and size-selective patterns of extinction among calcifiers (18, 19).
The observed magnitude of acidification is compatible with the
rainout of SO2 and NOx released by the impactor (10, 20, 21),
depending on the timing of sediment deposition at Geulhem-
merberg. The effect of rainout products was transient (e.g., ref.
21), and if Geulhemmerberg clays were deposited on timescales
greater than a few hundred years, a contribution to acidification
from CO2 release would have been required. This additional CO2
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Fig. 1. Records of surface ocean foraminiferal δ11B (B), calculated pH (C), and pCO2 (D) across the K-Pg boundary, with high-resolution foraminiferal diversity
counts from ref. 39 at the K-Pg Global Boundary Stratotype Section and Point (El Kef) plotted for context (A). pH is calculated assuming our best estimate of K-Pg
δ11Bsw, 39.45 ± 0.4‰. pCO2 is calculated from pH along with total alkalinity estimates at each site from a GENIE late Maastrichtian simulation, adjusted for dynamic
changes in alkalinity across the K-Pg using LOSCAR simulations from ref. 22 that match observed patterns of carbonate burial. Gray shaded areas are 1-sigma
uncertainties, with thin lines representing 1,000 Monte Carlo simulations from the 10,000 that were run. For clarity, we only plot those samples that represent the
surface mixed layer, which should be approximately in equilibriumwith the atmosphere. Additional data from deep-sea benthic and thermocline-dwelling planktic
foraminifera that do not reflect atmospheric pCO2 can be seen in Fig. 2 and in Dataset S1. For details of the age models used, the estimation of δ11Bsw, carbonate
system calculations, and uncertainty propagation see SI Appendix.
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could be sourced from carbonate target rocks (ref. 1 and refer-
ences therein), the biosphere [through wildfires and decay (ref. 1
and references therein)], a transient weakening of the biological
carbon pump (ref. 22 and references therein and SI Appendix),
and/or a contribution from a pulse of volcanism (5).
Loss of plankton functional groups with the K-Pg impact has

profound implications for marine carbon cycling (22), manifest in
one of the earliest and most striking geochemical observations of
the K-Pg boundary in open ocean sediments: a convergence in the
δ13C values of surface- and deep-dwelling calcifiers (e.g., ref. 23).
Paired measurements of δ11B (and hence pH) from surface and
deep water after the K-Pg boundary allow us to address a long-
running, unresolved debate about the cause of this convergence,
and the long-term effect of the K-Pg mass extinction on marine
carbon cycling. Surface ocean δ13C is typically maintained at heavy
values relative to the deep sea through the biological pump, which
exports isotopically light organic carbon from the surface ocean to
depth. The sharp drop in surface ocean δ13C at the K-Pg was
therefore initially interpreted as a near-total loss of marine new
primary productivity after impact, in the “Strangelove Ocean”
hypothesis (24). Later, the “Living Ocean” hypothesis (25) posited
that such a reduction of vertical δ13C gradients arose instead from
a decrease in the efficiency of the biological pump, that is, con-
tinued productivity but reduced sinking efficiency leading to more
remineralizaton of organic carbon in the upper water column.
Evidence for export to the deep ocean persisting in at least some
regions led to the “Heterogeneous Ocean” hypothesis (11, 26),
while it has also been argued that part of the reduction in δ13C
gradients stems from the fact that carbon isotope vital effects differ
in postextinction carbonate producers compared to the pre-
extinction ones (11, 27). These latter scenarios appear more
compatible with low levels of benthic foraminiferal extinction at
the K-Pg (11, 28) than a near-total loss of primary or export
production. Another alternative hypothesis not linked to any ma-
rine biogeochemical response is that extremely high atmospheric
pCO2 (thousands of parts per million) could have driven conver-
gence in deep- and surface-ocean δ13C inorganically (29). Such a

scenario might arise if outgassing from the Deccan Traps was
accelerated following the impact (4).
Our records show that initial surface acidification was followed

by a rapid rebound and overshoot in surface ocean pH (ΔpH ≈
0.5) within 40 ky of the K-Pg boundary, returning to preevent
values after an additional ∼80 ky (Fig. 1A). This is consistent with
model predictions of ocean pH rise due to the extinction of cal-
cifying organisms and a consequent transient reduction in the
marine alkalinity sink (22, 30). Such a period of imbalance in
marine alkalinity fluxes in the earliest Danian is supported by
observations of improved deep-sea carbonate preservation (22),
the occurrence of heavily calcified deep-sea benthic foraminifera
(31), and the deposition of abiogenic calcite crystals in the oceans
(32). The absence of any prolonged (>50 ky) surface ocean acid-
ification after the K-Pg suggests, therefore, that if there were a
state shift toward significantly more active Deccan CO2 degassing
in response to impact (4), its effects were overwhelmed by the
biogeochemical effect of extinction. Other independent pCO2
proxy records (e.g., ref. 33) likewise do not support a substantial
rise in CO2, and there is no evidence for deep-sea warming at this
time (34). Thus, we discount high pCO2 as the driver of reduced
vertical δ13C gradients (29) and infer that the convergence in
surface and deep-ocean δ13C arose from a change in oceanic
biogeochemical cycling, combined to some extent with changes in
carbonate vital effects.
To explore how changes in the carbon cycle would manifest in

vertical pH and δ13C gradients, we used GENIE (Grid ENabled
Integrated Earth System Model) (35), with a late Maastrichtian
bathymetry and continental configuration (SI Appendix, Fig. S17
and SI Appendix). We simulate the response of marine δ13C and
pH given either reduced or zero primary productivity (a “Strang-
elove Ocean”-type scenario) or less efficient biological pump (i.e.,
enhanced remineralization in the upper water column, “Living
Ocean” scenario; full details are given in SI Appendix). For each
simulation, we show depth transects for δ13C and pH at Shatsky
Rise (ODP Site 1209) (Fig. 2 B and C). Pacific basin δ13C zonal
means for 3 illustrative states of biological pumping are shown in
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Fig. 3. We use the observed patterns of boron and carbon isotope
change to distinguish between the competing hypotheses for
postextinction biogeochemical change. The fingerprint of the
“Strangelove” scenario with a complete loss of productivity is a
reversed vertical δ13C gradient with surface ocean δ13C val-
ues >1‰ lighter than benthic (Fig. 2B) and a muted but positive
surface-deep pH gradient (Fig. 2C). The “Living Ocean” scenario
with shallower organic matter remineralization leaves a muted but
positive surface-deep δ13C gradient, but with a flattened pH gra-
dient. Only with a 50% reduction in global new primary pro-
ductivity can our model produce a flattened vertical δ13C gradient
together with a positive pH gradient.
The “Strangelove” scenario produces a pronounced >1‰

reversed vertical δ13C gradient (Fig. 2B) rather than the observed
approximately flat gradient. This phenomenon arises because of
the solubility pump, that is, the increased solubility of CO2 (and
hence CO2 uptake) in cooling surface waters as they reach high
latitudes, where they ultimately sink to form deep water. Because
the fractionation between dissolved CO2(aq) (and thus atmospheric
pCO2) and aqueous bicarbonate (and thus dissolved inorganic
carbon, DIC) increases by about 0.1‰ per °C cooling, the surface

δ13CDIC at colder, higher latitudes is driven higher with respect to
the atmosphere compared to the warmer, low-latitude ocean sur-
face (Fig. 3C). Although this effect of the solubility pump is always
there, typically the action of the biological pump overprints the
pattern of the solubility pump to give the observed “normal” sign
of δ13C, with most positive values at the surface (Fig. 3A and SI
Appendix). Somewhere between a “Strangelove”-style shutdown
and a full-strength biological pump, there must exist a weaker state
of the biological pump that would impart a δ13C gradient opposite
in sign and equal in magnitude to the solubility pump, canceling
out the difference in δ13C between surface and deep ocean. We
find this occurs with a 50% reduction in global export production
for all but the highest-latitude Northern Pacific, where downwel-
ling waters overlay an older (and lower δ13C) lens of southern-
sourced water (Figs. 2B and 3B). This partially maintained
productivity is consistent with the survival of benthic forami-
nifera at the K-Pg (11, 28).
The combination of our cGENIE simulations and the observed

sequence of changes in vertical pH and δ13C gradients at Shatsky
Rise (Fig. 2A) allow us to propose a hypothesis for the behavior of
the marine carbon cycle after the K-Pg impact. During the first
tens of thousands of years following impact, reduced vertical δ13C
gradients without an associated collapse in pH gradients (Fig. 2A)
are consistent with a substantial reduction in new primary pro-
ductivity globally following mass extinction (Fig. 2 B and C and SI
Appendix). The magnitude of productivity loss required depends on
changes in carbon isotope vital effects in pelagic CaCO3 producers,
which likely account for some (but not all) of the observed collapse
in δ13C gradients (11, 27, 36). Reduced global export productivity
can, however, align with published observations of a “Heteroge-
nous Ocean” with stable or increased productivity at certain sites
[e.g., Shatsky Rise (11, 26)]. A global reduction in new primary
productivity may have led to a buildup of nutrients in the surface
ocean, and thus some locations (e.g., highly oligotrophic gyres) may
have supported increased new/export primary productivity in the
Danian relative to their preimpact state, even while export pro-
ductivity globally was reduced (SI Appendix, Figs. S23 and S24).
After this period of globally reduced, but not collapsed, export

productivity, we see a convergence in shallow and deep-ocean pH
in our final time-slice ∼120 ky post-K-Pg (Fig. 2A). In our model
scenarios, only by remineralizing organic carbon shallower in the
water column can one produce similar pH values in both the deep
sea and the subsurface (Fig. 2C). Shallow water remineralization
alone (i.e., a “Living Ocean” scenario) does not fully collapse the
δ13C gradient in our model, but combined with known carbon-
isotope vital effects that drive surface-derived carbonates lighter
than ambient δ13CDIC (27, 36, 37) the expression of such a scenario
in the fossil record could be a full collapse. We therefore suggest
that after an initial period (up to 40 ky) of globally partially weak-
ened new primary productivity globally, it progressively began to
recover, but without full restoration of pelagic ecosystem structure
and function. In such a scenario, persistently ineffective ballasting
of marine organic matter or other factors could have then resulted
in more organic material being remineralized shallower in the
water column [i.e., a “Living Ocean” scenario (25)], thereby re-
ducing δ13C and pH gradients between the surface and deep sea.
Reduced vertical δ13CCaCO3 gradients persisted for over 1 My

after the K-Pg impact (e.g., ref. 27), which suggests that the ef-
ficiency of organic carbon export to the deep sea, a key pelagic
ecosystem function, was reestablished slowly. Our δ11B data do
not support prolonged surface ocean acidification, making it
difficult to attribute this delayed biogeochemical recovery to
acidification from sustained (or enhanced) CO2 degassing from
the Deccan Traps. Rather, there may be intrinsic constraints on
the time required to recover normal marine ecosystem function
after such severe global perturbations, despite the short gener-
ation times that should make marine plankton ideally suited to
rapid evolutionary radiation (38). In this way, the K-Pg event
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δ13CDIC gradient at low latitudes in the absence of biological productivity (C; see
the main text for explanation).
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shows that even geologically rapid ocean acidification events can
have prolonged and profound biotic ramifications.
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